Skip to main content
Part of complete coverage on

Liquid air future fuels garage inventor

STORY HIGHLIGHTS
  • British inventor Peter Dearman develops novel engine powered by "liquid air"
  • The 61-year-old says his technology can be used to power cars and store energy
  • British engineering company, Ricardo building an engine based on Dearman's design
  • UK pilot power plant demonstrating how liquid air can be used to store intermittent renewable energy

(CNN) -- Watching Peter Dearman at work amid the clutter in his garage cum workshop, it's easy to see why one of his sons refers to him as a sort of "nutty professor."

The British inventor has been tinkering with "liquid air" engines at his home in Bishop's Stortford, Hertfordshire for more than three decades.

"I don't think it's any good having ideas and not being able to make them. It's very difficult if you just go to people with ideas -- you can't actually show them it working," Dearman says.

All that hard work is starting to pay off, as interest in the 61-year-old's invention -- which has applications for both motoring and renewable energy storage -- gathers pace.

Liquid air is essentially air which has been cooled to very low, or cryogenic, temperatures (around -190 degrees Celsius or -310 degrees Fahrenheit) and can be stored in insulted containers.

Read: Mine Kafon: The low-tech tumbleweed minesweeper

"[Energy storage] is essential because, with any renewable energy source, it's variable. So you have to able to store a certain amount of it to cope with peak demand
Peter Dearman

When exposed to heat, the liquid starts to expand as it turns back into a gas. If this process of reheating is conducted in a confined space, say, an engine cylinder, it creates high pressure air which can drive a piston.

Whilst building a car powered by liquid air is nothing new -- a model was demonstrated as early as 1903 -- Dearman's adaptation is.

"The unique thing about this engine is that it uses a heat exchange fluid (in this case, anti-freeze) which is placed on top of the piston in the cylinder," Dearman explains.

"Into that we introduce liquid nitrogen which is atomized and gives us good heat contact. The heat exchange fluid keeps the gas warm (as the piston moves up and down) and increases the efficiency."

Dearman has come a long way since he developed his first working prototype using a modified a lawn mower engine. Today, he demonstrates a custom-built car which runs smoothly around a farmyard near his home.

Read: Shutter shades creates new fashion code

The technology has caught the eye of British engineering company Ricardo who are currently building an engine based on Dearman's design for use in agricultural vehicles and mining equipment.

Li-Fi could be the future of the web
How Tetra Pak took over the world
The enduring cult of the Rubik's Cube

The company say the engine has "numerous practical applications in the future market place ... and is likely to compete with hydrogen fuel cell and battery electric systems."

Liquid air could also help store surplus energy generated by wind and solar.

"[Energy storage] is essential because, with any renewable energy source, it's variable. So you have to be able to store a certain amount of it to cope with peak demand," Dearman said.

A pilot power plant in Slough, Berkshire -- the first of its kind in the world -- is currently trialing the technology.

Read: Toy chopper takes mental concentration to new heights

A huge vacuum flask at the facitlity holds 60 tons of liquid air, but instead of anti-freeze, they mix it with waste heat coming from the neighboring power station.

But the principles are exactly the same, Dearman says.

"We take a large tank, heat it with waste heat and that creates the pressure that runs the turbine which creates electricity ... simple," he says.

The plant run by Highview Power Storage -- a company co-founded by Dearman and jointly funded by the UK government -- can generate 500 kilowatts of power, he says, but there is nothing to stop them being made on a much larger scale.

"It's not right that one generation should use up most of the world's resources during their lifetime. So, the more we can do to alleviate that the better, I think
Peter Dearman

Using waste heat also raises efficiency levels up to 70% -- not as high as the 80% battery storage can achieve, but competitive. It also has one crucial advantage, Dearman says.

"Batteries aren't really scalable, you can't use them worldwide because there's not enough materials to make batteries from. So you need a system that doesn't use scarce resources," he said.

The UK's Institution of Mechanical Engineers (IMechE) recently launched a working group investigating the potential of liquid air storage.

Speaking in October, IMechE's Head of Energy and Environment, Tim Fox said: "Liquid air and liquid nitrogen are an exciting alternative we should explore to store energy. It seems to address many of the challenges we face and is affordable, uses mature components and is highly scalable."

All this is rich encouragement for Dearman, who isn't driven by money, but by a lifelong fascination with energy and a desire to help make the world a more efficient place.

"It's not right that one generation should use up most of the world's resources during their lifetime. So, the more we can do to alleviate that the better, I think."

ADVERTISEMENT
Part of complete coverage on
September 2, 2013 -- Updated 0934 GMT (1734 HKT)
Next time you marvel at the computer hardware in your hand, spare a thought for the billions of tiny transistors within. Without them our modern gizmos wouldn't work.
August 5, 2013 -- Updated 0916 GMT (1716 HKT)
Simon Dale Hobbit house
As far-fetched as it sounds, if you can't afford to buy a house then designing and building your own may be more viable than you assumed.
August 5, 2013 -- Updated 1749 GMT (0149 HKT)
The world's first stem cell burger, which cost a cool $300,000 to develop, has been cooked and eaten by two volunteer tasters in London
August 15, 2013 -- Updated 1356 GMT (2156 HKT)
Copenhagen Suborbitals launch a rocket
Amateur space enthusiasts are reviving humanity's interplanetary dreams through crowd-researched and crowd-funded space projects.
Do you need a new TV, house or limb? All you need is to press print. Take an interactive scroll through to the future of 3D printing.
August 5, 2013 -- Updated 0919 GMT (1719 HKT)
Tree climber
See how India's frugal innovators are adapting existing tools and technologies to provide all manner of imaginative low-cost solutions.
June 20, 2013 -- Updated 2032 GMT (0432 HKT)
The Paravelo flying bicycle
It could easily be a deleted scene from the classic movie, ET, but two British inventors claim to have invented the world's first flying bicycle.
June 20, 2013 -- Updated 1523 GMT (2323 HKT)
The Toji Pagoda in Kyoto, Japan.
What's 1,200-years-old, made of wood and responsible for the smart-phone in your pocket? Japan's Toji Pagoda, of course!
June 7, 2013 -- Updated 1012 GMT (1812 HKT)
Google self-driving car
The inventor of GPS technology, Bradford Parkinson, tells CNN the future of transport is self-driving cars.
May 29, 2013 -- Updated 1253 GMT (2053 HKT)
Justin Beckerman in his submarine
It may be constructed from drainage pipes but according to its 18-year-old inventor, this single-person U-boat can plunge to a depth of 30 feet.
May 24, 2013 -- Updated 1728 GMT (0128 HKT)
Rare Apple 1 computer
A treasure trove of technological 'firsts', including an incredibly rare Apple 1 computer, goes on auction in Germany
May 10, 2013 -- Updated 1124 GMT (1924 HKT)
How did an ex-cop fashion a fully functioning robot from old hi-fi speakers, DVD players and assorted household items?
April 26, 2013 -- Updated 1341 GMT (2141 HKT)
More than 10 billion USB sticks are believed to be in use around the world today ensuring co-inventor, Ajay Bhatt, has a place in tech's unofficial hall of fame.
ADVERTISEMENT