Skip to main content
Part of complete coverage on

Spider lessons: How to mend your body with silk

  • Is this knee implant really made from spider's silk?
  • Dr Nick Skaer has created FibroFix implant that allows cells to "grow into" it
  • It could help thousands of people to avoid knee replacement surgery
  • Eventually, the material could help repairall varieties of human tissue -- including nerves

Oxford, UK (CNN) -- If you ever try your hand at farming spiders, you'll very soon discover it's no easy task.

Penning in a bunch of golden orb weavers -- the queens of the web-spinning world -- will earn you only a few milligrams of ultra-tough spider's silk.

That's if they don't eat each other first, explains Dr. Nick Skaer. And they will.

Bug catcher

As a boy, Dr Skaer loved hunting for creepy crawlies -- but was never a fan of spiders.

Dr Nick Skaer
Dr Nick Skaer

Today, Skaer's day-job involves persuading people to implant the creatures' silky secretions under their skin -- with the promise that the fiber will weave together damaged tissue.

It's a "quantum leap," admits Dr Skaer, but his creation could one day relieve agony for millions.

Watch the video above to see how the Dr Skaer created the FibroFix implant.

Thread of life

Skaer, now the CEO of biomaterials producers Orthox explains that silk produced by spiders is not just naturally tough -- 25 times the strength of steel -- it is also "biocompatible."

The close similarity between molecules in the spider silk and proteins in the human body means human cells can grow into the fiber.

When implanted in the human body, a device made from spiders silk would encourage the surrounding cells to "repopulate the device with actual human living tissue," Skaer says.

"If you've got a very strong, resilient material which also has a lot of similarities to tissues in the human body, it's a great place to start for trying to make a medical implant."

Watch: 'The night I invented 3D printing'

A silkworm
A silkworm

Saved by the silkworm

Instead of fighting the spider's cannibal instinct, and meager rate of production, Skaer's team set about creating fake spider's silk -- made from the same fibers that go into high class scarves.

The team took silkworms, which produce 1000 times as much silk as a spider, and broke it down to the basic molecules.

Re-spinning this so that all the proteins are closely aligned -- just how a spider does -- creates a far stronger fiber than the silkworm can.

Or -- when Skaer presents their finished product -- a rubber-looking crescent-shaped implant.

...we hope to have this available for patients within the next two to three years.
Dr Nick Skaer

Friends in knees

The FibroFix implant is soon destined for knee joints, where Skaer believes it can help people with damaged cartilage to regrow the shock-absorbing tissue.

Without this implant, millions of people have no option but to resort to total knee replacement surgery.

As of 2010, over 600,000 total knee replacements are performed annually in the United States alone, and estimates suggest that this figure will increase 6-fold by 2030.

This marks a $13 billion-per-year cost for Americans, which is set to rise as the ageing Baby Boomer generation battle age-related conditions such as osteoarthritis, but demand to stay active.

The first round of trialists are set to start receiving FibroFix implants this year, and Skaer hopes they will pave the way for others to avoid knee replacement:

"If the clinical trials go well, we hope to have this available for patients within the next two to three years."

Meet the genius behind 3-D printing
Is this the ultimate space suit for Mars?
3D projector creates life-like holograms

Read: The coolest things technology has up its sleeve in 2014

Beyond the knee

Skaer sees future applications in other joints -- "the hip, the shoulder, ankle, all of these suffer osteoarthritis" -- as well as in the cartilage discs between the bones in the spine.

It doesn't stop there, either:

"If you've got a technology that integrates very well with the body -- which allows cells to grow down into it -- then bones and joints certainly aren't the only tissues in the body that you could look to address."

In the long term, Skaer imagines silk platforms being used to patch up intestines, hernias, and muscles -- including in the heart.

There's even the suggestion that -- one day -- it could fix a severed spine:

"Is there the potential for nerve repair? Well, the chaps [research scientists] at Oxford University have certainly started looking at nerve repair as an interesting further application of this technology. And they've got some promising early results certainly."

"That obviously is far, far earlier than the stage that we're at..."

Watch: The technology bringing Sinatra, Tupac back to life

Spider thread revisited

For now, relieving the agony of knee pain is motivation enough.

And all this has given him a new perspective on the crawling spider:

"Spiders I suppose are very different from when I was turning over rocks and looking underneath them and when I was a kid.

"I don't so much see the eight legs crawling around and the sharp pair of fangs -- I see something that can spin me a remarkable material, and that's very exciting, as a scientist."

Part of complete coverage on
August 8, 2014 -- Updated 0939 GMT (1739 HKT)
Engineer Alan Bond has been developing a new concept for space travel for over 30 years -- and his creation is now on the verge of lift off.
July 25, 2014 -- Updated 1210 GMT (2010 HKT)
Crumbling buildings, burnt-out PCs, and cracked screens -- a new generation of "self-healing" technologies could soon consign them to history.
June 24, 2014 -- Updated 0909 GMT (1709 HKT)
Discover a dancing cactus field, basketball on the Hudson River, and mind-bending 3D projections on robotic screens.
May 23, 2014 -- Updated 1707 GMT (0107 HKT)
Would you live there? Design student Peter Trimble says it's actually a surprisingly good idea.
May 14, 2014 -- Updated 1450 GMT (2250 HKT)
Alpha Sphere
Singing Tesla coils, musical ice cream, vegetables on drums... and this ball? Find out how "hackers" have created a new generation of instruments.
May 28, 2014 -- Updated 1643 GMT (0043 HKT)
Technology has long learned from nature, but now it's going micro. "Cellular biomimicry" sees designers take inspiration from plant and animal cells.
April 9, 2014 -- Updated 1708 GMT (0108 HKT)
Forget wearable tech, embeddable implants are here. Learn more about the pioneers who are implanting devices into their bodies.
May 7, 2014 -- Updated 1026 GMT (1826 HKT)
A visitor of the 'NEXT Berlin' conference tries out Google Glass, a wearable computer that responds to voice commands and displays information before your eyes. It is expected to go to market in late 2013.
We know how wearable tech can enhance our fitness lives but there's evidence that its most significant application is yet to come: the workplace.
April 10, 2014 -- Updated 0813 GMT (1613 HKT)
Samsung's research unit announces new way to synthesize graphene, potentially opening the door to commercial production.
March 31, 2014 -- Updated 1215 GMT (2015 HKT)
iRobot, creators of vacuuming robot Roomba reveal how they learned from secret experiments -- in space travel, minefields, and toys.
March 28, 2014 -- Updated 1623 GMT (0023 HKT)
A light-bulb glowing in middle of a room with no wires attached. "It's the future," says Dr Katie Hall.
March 3, 2014 -- Updated 1626 GMT (0026 HKT)
Knee replacements that encourage cells to regrow could soon be manufactured -- by spiders. Find out how.
February 14, 2014 -- Updated 1403 GMT (2203 HKT)
Meet Chuck Hull: the humble American engineer who changed the world of manufacturing.
February 6, 2014 -- Updated 1448 GMT (2248 HKT)
The key to self-knowledge? Or just the return of the phony "mood ring"? Check out our top mood-sensing technology in development.