Skip to main content
Part of complete coverage on

Artificial eyes, plastic skulls: 3-D printing the human body

Scientists are 3-D printing body parts ranging from plastic skulls to artificial eyes. Fripp Design and Research and Manchester Metropolitan University say they are able to 3-D print up to 150 prosthetic eyes an hour. Scientists are 3-D printing body parts ranging from plastic skulls to artificial eyes. Fripp Design and Research and Manchester Metropolitan University say they are able to 3-D print up to 150 prosthetic eyes an hour.
HIDE CAPTION
Printed eyes
Artificial ear
Artificial ear
Plastic skull
Printed skin
Robohand
Project Daniel
Bones
<<
<
1
2
3
4
5
6
7
8
>
>>
STORY HIGHLIGHTS
  • Researchers 3-D printing growing range of body parts
  • Creations range from plastic prostheses to parts made from living cells
  • Much work is at the research stage, but could soon be used in humans

Vital Signs is a monthly program bringing viewers health stories from around the world.

(CNN) -- The 21st century has seen the growth of 3-D printing, with well-known applications in architecture, manufacturing, engineering, and now increasingly in medicine.

The birth of 3-D scanning technologies combined with organic inks and thermoplastics has enabled the "bioprinting" of a range of human body parts to accommodate a wide range of medical conditions. Let's start form the top.

Skulls

Doctors at University Medical Center Utrecht, in Holland, have reported successfully performing the first surgery to completely replace a patient's skull with a tailor-made plastic version that was 3-D printed.

The patient had a chronic bone disorder that caused her skull to be 5cm thick. The hospital said the condition had caused her to lose her vision and ultimately would have killed her, but that three months after the operation the patient regained her vision and was able to return to work.

Doctors at University Medical Center Utrecht implant a printed plastic skull

Eyes

Batch-printing of up to 150 prosthetic eyes an hour has become a reality according to UK-based company Fripp Design and Research. The mass-production technique promises to speed up the manufacture of eye prostheses and drive down the cost. Printing each eye with slight variation in color is intended to produce better aesthetic results.

3-D printing for the human body
3-D printing gave her a chance at a normal life
Refugee amputee gets 3-D printed arm

The aim is to ensure more affordable eyes for the developing world with countries such as India reportedly showing interest in the products. The company, in collaboration with the UK's Manchester Metropolitan University, hopes to implement the use of its printed eyes within the next year.

Noses and Ears

Fripp Design has also collaborated with the University of Sheffield, in the United Kingdom, to produce facial prostheses such as ears and noses. 3-D facial scans of patients are used to print out prosthetics using pigments, starch powder and silicone for replica facial parts closely matching the patient's original nose or ear. The real benefit here is that once parts begin to wear, they can be re-ordered at a fraction of the cost as the technology and design will already be in place. The simpler process of scanning a patient's face, rather than more invasive face molds needed for traditional prostheses, also makes the process a lot more patient-friendly.

A team at Cornell University, in the United States, is doing things differently. It's printing 3-D molds of a patient's ear using ink gels containing living cells. The printed products are injected with bovine cartilage cells and rat collagen and incubated until they are ready three months later. Human transplants could be possible within three years, say researchers.

Read: Carpenter cuts off fingers, prints new ones

Synthetic Skin

James Yoo at the Wake Forest School of Medicine in the United States is developing a printer that will print skin straight onto the wounds of burn victims. The "ink" they're using consists of enzymes and collagen which once printed are layered with tissue cells and skin cells which combine to form the skin graft. The team plans on developing portable machines to print skin directly onto wounds in remote and war-torn settings.

The ideal synthetic skin graft needs to match the coloration of the patient as accurately as possible in order for the graft to look natural. Dr. Sophie Wuerger and her team at the University of Liverpool in the UK are working on using 3-D cameras, image processing and skin modeling to ensure the tone and texture of printed skin match up to the real thing.

Researching skin transplants on a fake hand, at Wake Forest School of Medicine.

Limbs

Thermoplastics have led the way in the growth of printable hands, arms and even individual fingers. Richard Van As is one of those producing affordable hand and finger prostheses with his company Robohand, based in South Africa. The team is creating functional fingers for use on amputated hands by combining the printing of the thermoplastic polylactide with aluminum and stainless steel digits to create a functioning mechanical finger.

Robohand recently collaborated with U.S. entrepreneur Mike Ebeling on a project providing affordable printed arms to war amputees in Sudan. The collaboration is known as "Project Daniel," named after 14 year-old Daniel Omar who lost both his hands and part of his arms after a bomb was dropped near his family home in Sudan's Nuba mountains. The team is enabling Robohands to reach the masses at costs as small as $100 for a basic hand.

Bones

One of the more established fields of 3-D printing is the bioprinting of human bone implants, and now replacement bones.

In 2011, researchers at Washington State University announced they had printed a bone-like structure that acts as a scaffold for new bone cells to grow on, before it degrades. The structure was printed using calcium phosphate and has been successfully tested in animals. The hope is to print customized grafts for use in patients with bone fractures.

Read: 3-D printed arm gives hope to boy maimed by bomb

Read: Robot exoskeleton lets girl lift her arms

Read: Lungs on a chip and 3-D printed hearts

ADVERTISEMENT
Part of complete coverage on
April 24, 2014 -- Updated 1002 GMT (1802 HKT)
A device for extracting water from air is being used by the military -- could it help developing countries too?
May 23, 2014 -- Updated 0931 GMT (1731 HKT)
Air-cleaning pavillion to be launched at the 2015 Milan Expo
Air pollution is now the biggest global environmental killer, but these high-tech solutions could save lives.
April 14, 2014 -- Updated 1954 GMT (0354 HKT)
robohand metal hand
A South African carpenter lost his fingers in an accident -- now he's making mechanical fingers and hands for others.
August 7, 2014 -- Updated 1216 GMT (2016 HKT)
Connie Culp was injured when her husband shot her in 2004. She underwent a near-total face transplant at the Cleveland Clinic in 2008 -- the first operation of its kind in the United States
As face transplants become more common, hospitals may soon be asking: Will you donate your face?
May 28, 2014 -- Updated 1718 GMT (0118 HKT)
TB is growing increasingly drug resistant -- and it's becoming a global problem.
August 14, 2014 -- Updated 1249 GMT (2049 HKT)
A 10-year-old inventor and a 20-year-old MD? Meet the whiz kids changing the face of medicine.
May 9, 2014 -- Updated 1027 GMT (1827 HKT)
A Southern Sudanese man uses a pipe filter to protect himself from Guinea worm disease while drinking water from a potentially infected source. The pipe filter strains out the water fleas that can contain Guinea worm larvae.
Guinea worm disease once infected millions -- now it's almost eradicated. But can we catch the final cases?
September 4, 2014 -- Updated 1046 GMT (1846 HKT)
A staff member from the Environment & Animal Society of Taiwan, a non-profit organisation based in Taipei, points at the part of a horseshoe crab where blood is drawn for use in laboratory tests against animals, during a press conference in Taipei on December 4, 2012.
Hundreds of thousands of horseshoe crabs are captured each year for their incredible blue blood. Here's why.
September 12, 2014 -- Updated 1127 GMT (1927 HKT)
Lika Rose Caticon, 7, who is suffering from Typhoid fever, holds a doll as she lies in a makeshift cot at the overcrowded JP Rizal Memorial District Hospital in Calamba City south of the Philippine capital Manila on March 5, 2008.
As we travel ever further afield, which infectious diseases do you need to know about?
vital signs logo
Vital Signs is a monthly program bringing viewers health stories from around the world.
ADVERTISEMENT