burn gun 1
Experimental treatment gives burn victims hope
01:08 - Source: CNN

Story highlights

Scientists in England have crossed a major hurdle to creating blood cells in the lab

Using stem cells, the researchers made 'immortal' cells that create an unlimited supply of red cells

It will be years before these cells are put to use in the hospital, and only for a small subset of patients

Volunteer blood donors will still be needed

CNN  — 

For decades, scientists have sought to create red blood cells in the lab – a “holy grail” that some hoped could ease regional blood shortages, especially for people with rare blood types.

But now British researchers say they have overcome a major barrier that has plagued many scientists: creating enough red cells to fill a blood bag. Their findings are published in the journal Nature Communications.

“When we kept (the cells) continually dividing for a year, we were quite excited,” said Jan Frayne, a biochemist at the University of Bristol and one of the study’s lead authors.

The latest study “is a dramatic step forward because it gives us the view that we can actually scale up to whole units of blood,” said Dr. Harvey Klein, chief of the NIH Clinical Center’s Department of Transfusion Medicine. Klein was not involved in the study.

Two to three drops of blood may contain a billion red cells, according to the American Red Cross.

“This technology gives us that particular dream, or at least it brings us a lot closer,” said Klein.

There will be blood

To ramp up production, the UK researchers infected stem cells with cervical cancer genes. By inserting cancer genes from human papilloma virus (HPV) into bone marrow cells, Frayne and her colleagues were able to create the first adult red blood cells that could multiply an infinite number of times. These cells are referred to as “immortal.”

The concept may be a familiar one to those who have read the book “The Immortal Life of Henrietta Lacks,” in which a related strain of HPV led to the production of HeLa cells, which are widely used in scientific research. These cells were taken from a cervical cancer biopsy from Lacks, who passed away in 1951 but whose cells still multiply in laboratories today.

As the red blood cells mature, they spit out the nucleus – the core that houses their DNA – giving the cells a signature round, dimpled shape. Frayne and her colleagues filtered those cells from the rest, so the final batch did not contain the active cancer genes.

Frayne said that a small number of these stem cells can be found in a simple blood draw, too; there’s no need to do an invasive biopsy of the bone. Since her team completed the study last year, she said, they have already created two new immortal cell lines this way.

“It’s a brilliant approach, and they seemed to have solved several of the really important bottlenecks,” said Dr. Robert Lanza, Chief Scientific Officer at the Astellas Institute for Regenerative Medicine.

Lanza is no stranger to the research; he tried to solve the same problem years ago using embryonic stem cells.

But his cells didn’t eject the nucleus well enough, and fetal blood cells have too tight a grip on oxygen; they are less likely to drop off the oxygen where it needs to go. Eventually, though, he abandoned the research because “it’s not really commercially viable.”

First blood

Many others have attempted to create blood in the lab, using stem cells from umbilical cords and other sources. But these stem cells fizzle out and stop dividing at a certain point.

“It’s almost like they desperately want to carry on differentiating” into mature cells, Frayne said.

In 2011, a group of French researchers transfused lab-grown red blood cells – which grew from stem cells, though not Frayne’s endless supply – into one human. The cells functioned and survived normally.

Frayne said that the first human trials will begin in England later this year, though they will not be using the immortal cells from her new study. Making the new cells under industry standards, Frayne said, could take at least several more years.

A number of other prior studies have sought to create oxygen-carrying liquids without the need for blood cells, but none of them have proved to be widely usable. In fact, a 2008 analysis found that they carried an increased risk of heart attack and death. A blood substitute called PolyHeme was famously rejected by the US Food and Drug Admini