A rendering of NASA's Perseverance rover on Mars. The probe is due to arrive at the red planet in February 2021.
See NASA's big plans for its new Mars rover, Perseverance
01:36 - Source: CNN Business
CNN  — 

After years of designing, building, planning and testing, the NASA Perseverance rover’s launch readiness review has concluded, and it’s a go for launch on July 30.

Perseverance is armed with a multitude of new capabilities and instruments to explore and experience the red planet.

The rover is designed to determine whether life existed on ancient Mars, characterize the Martian climate and geology and prepare for human exploration. It will investigate Jezero Crater and search for any evidence that the ancient lake bed once supported life.

Perseverance will collect up to 43 samples of Martian rock and soil over the course of its two-year mission. These samples will be stowed in white tubes on the Martian surface to be returned to Earth on a future planned mission.

Riding along with Perseverance to Mars is Ingenuity, the first helicopter that will be flown on another planet. It’s one of several experiments that will test technological capabilities during this mission that may be used more in future missions.

Here’s a look at some of the other exciting features of Perseverance and how it can help pave the way for humans landing on Mars in the future.

Robotic eyes and ears

The rover’s high-resolution camera “eyes” will help Perseverance survey the landscape, look for intriguing rocks to sample and decide where to deploy some of its instruments.

Perseverance’s cameras will be capturing video during the rover’s “seven minutes of terror” as it lands itself on Mars without any help from its teams on Earth, due to the unavoidable communication delay between the two planets.

While the video won’t be available in real time during entry, descent and landing, it will be shared in the weeks after landing.

The rover is also carrying a couple of microphones, and the rover teams look forward to hearing the sounds of the rover’s wheels on the Martian surface and the sound of wind on Mars.

The other microphone is on SuperCam, a scientific instrument that fires a laser at rocks and creates a plasma cloud that can provide the chemical makeup of the rock.

“When we fire this laser on Earth, you can hear a pop or zap,” said Matt Wallace, deputy project manager at NASA’s Jet Propulsion Laboratory. “The science team is hoping with a microphone on top of the mast, they can learn something about the composition of the things their laser is interacting with.”

SHERLOC goes to Mars

The rover’s robotic arm has 21st-century scientific abilities.

The Planetary Instrument for X-ray Lithochemistry, better known as PIXL, is a tiny, powerful X-ray beam that can detect over 20 chemical elements by pointing a beam at rocks. The beam produces a telling glow associated with each element present in about 10 seconds.

Its partner is known as SHERLOC, short for the long-winded Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals.

SHERLOC can seek out organic molecules and minerals, which helps inform science teams of where to collect and cache samples. Its ultraviolet laser will provide a different glow depending on the organic molecules and minerals it detects.

“These two new capabilities will allow us to investigate a postage stamp-size area for elemental chemistry and organic molecules,” said Ken Farley, Perseverance’s project scientist at the California Institute of Technology. “So we can both make a map of this small area and take a microscopic image. It’s a compelling way to look for microbial biosignatures.”

SHERLOC also carries five different materials used to make spacesuits to test how radiation and elements on Mars could weather and affect them for future human explorers.

And where would SHERLOC be without WATSON, a camera that can take microscopic images of grains in rock and textures? WATSON stands for Wide Angle Topographic Sensor for Operations and eNgineering.

A self-driving vehicle

Human rover teams at NASA will send Perseverance commands once a day, but the rover will rely on its advanced computer “brains” to help it drive autonomously the rest of the time.

Compared to previous rovers, Perseverance has the benefit of a second “brain” installed to help Perseverance land itself on Mars and avoid hazards that will be repurposed once it’s on the surface.