It took a sea and land journey to prove to scientists they were wrong about physics

The g-2 muon equipment moving up the llinois River.

Don Lincoln is a senior scientist at the Fermi National Accelerator Laboratory. He is the author of several science books for general audiences, including the best-selling audio book "The Theory of Everything: The Quest to Explain All Reality." He also produces a series of science education videos. Follow him on Facebook. The opinions expressed in this commentary are solely his. View more opinion articles on CNN.

(CNN)In 2013, a load of precious cargo was put on a barge and transported from the Smith Point Marina on Long Island, down the east coast of the US and up the Mississippi River and its tributaries. When the barge got close to Chicago, the freight was transferred to a flatbed tractor trailer and driven the rest of the way to its destination just west of the Windy City. It was a 50-foot-wide load, so the truck only drove at night.

Don Lincoln
What was this precious cargo? A scientific instrument that researchers hoped would shed new light on the field of physics once it reached its new home in a new lab.
    Eight years later, this equipment has done just that. On Wednesday, a scientific measurement, recorded by this apparatus, was publicly released. This may not sound like much, but this single measurement tells scientists that their theory about what is called the standard model of particle physics is incomplete -- and has to be rethought.
      As counterintuitive as it may seem, this is not bad news. The purpose of science is to seek truth. With this goal in mind, researchers are constantly returning to their data and checking to see if measurements and theories agree or disagree. While agreement is always satisfying, it's in the disagreement that progress is made. When a theory is shown to predict something other than what a valid measurement has revealed, scientists rethink their theory and adjust it.
      The standard model of particle physics, at the center of this news, explains the world of atoms and smaller things, and it was developed in the 1960s and 1970s. It has been universally accepted in the scientific world as being the most accurate subatomic theory devised so far. But that venerable model could well need to be changed because of this new measurement, which gives us reason to believe that the standard model is incomplete.
      What the standard model predicts -- and what this new measurement assesses -- are the magnetic properties of an ephemeral subatomic particle called a muon, which is very similar to the familiar electron, but with some differences. Muons are about 200 times heavier than electrons and they decay in a little over a millionth of a second. Otherwise, electrons and muons have a lot in common.