Scientists discover 'ghost' fossils beneath a microscope

A microscopic view of ghost nannofossils (left) can be seen along with their virtual casts (right). The fossils are 15 times narrower than the width of a human hair.

(CNN)The unexpected discovery of "ghost" fossils belonging to tiny, ancient organisms could provide insights about how life reacts to climate change in Earth's oceans.

Looking through a powerful microscope, researchers were stunned to see the impressions left by single-celled plankton, or fossilized nannoplankton, that lived millions of years ago -- especially since they were analyzing something else.
A study detailing the findings published Thursday in the journal Science.
    "The discovery of the ghost fossils was a complete surprise," said study author Sam Slater, researcher at the Swedish Museum of Natural History in Stockholm.
      "We were actually studying fossil pollen from the same rocks. I had never seen this style of fossil preservation before, and the discovery was doubly surprising because the imprints were found in abundance from rocks where normal nannofossils are rare or missing entirely."
      As the researchers examined the pollen under a scanning electron microscope, they spied "tiny potholes" on the surface of the pollen, Slater said. When they zoomed in to see the potholes using magnifications of thousands of times, they observed complex structures.
      Modern (left) and Jurassic (right) coccolithophore exoskeletons (coccospheres) can be seen side by side.
      Those structures were the impressions left by the exoskeletons of nannoplanktons called coccolithophores.
        This microscopic plankton still exists today, and it supports marine food webs, provides oxygen and stores carbon within seafloor sediments. A coccolithophore surrounds its cell using a coccolith, or hard calcareous plate, which can fossilize in rocks.
        Although tiny as individuals, coccolithophores can produce cloudlike blooms in the ocean that can be seen from space. And once they die, their exoskeletons drift down to rest on the seafloor. As they accumulate, the exoskeletons can turn into rocks like chalk.
        The ghost fossils were created as seafloor sediment turned into rock. Layers of mud accumulating on the seafloor pressed the hard coccolith plates together with other organic matter, such as pollen and spores. As time passed, acidic water trapped within the rock spaces dissolved the coccoliths. All that was left was the impression in the stone they once made.
        This diagram shows how tiny the ghost fossils were compared with fossilized pollen.
        "The preservation of these ghost nannofossils is truly remarkable," said study coauthor Paul Bown, a professor of micropaleontology at the University College London, in a statement.
        "The ghost fossils are extremely small -- their length is approximately five thousandths of a millimetre, 15 times narrower than the width of a human hair! -- but the detail of the original plates is still perfectly visible, pressed into the surfaces of ancient organic matter, even though the plates themselves have dissolved away," Bown said.

        Filling a gap

        Previous research noted a decline in these fossils during past global warming events that impacted the oceans, leading scientists to believe that the plankton were negatively affected by acidification in the ocean and climate change overall.
        The ghost fossils tell a different story entirely, providing a record that shows coccolithophores were abundant in the ocean during three ocean warming events 94 million, 120 million and 183 million years ago, across the Jurassic and Cretaceous periods.
        "Normally, palaeontologists only search for the fossil coccoliths themselves, and if they don't find any then they often assume that these ancient plankton communities collapsed," said study coauthor Vivi Vajda, professor at the Swedish Museum of Natural History, in a statement.