CNN  — 

Art and science can seem two opposites on a spectrum. One is creative and interpretive, the other exact and empirical. But an emerging technology known as Pure Structural Colour – dubbed the “boldest, brightest color on Earth” in a new exhibition – shows how interplay between the two may be revolutionary for both.

Pure Structural Colour is produced from nanostructures – tiny particles that reflect and scatter light to replicate the brightest hues found in nature. It was developed by Lifescaped, a lab and studio founded by the scientist and artist Andrew Parker. This month, artworks incorporating the technology have gone on public display for the first time at “Naturally Brilliant Colour,” an exhibition at the UK’s Royal Botanic Gardens in Kew, London.

The gallery itself is dark, with black walls accentuating expressionist paintings by Parker himself. Some were inspired by sunlight and phenomena like the Big Bang, while others imitate the colors and textures of flower petals and butterfly wings.

A kaleidoscopic artwork titled "Composition of Sunlight" by Lifescaped's Andrew Parker.

Elsewhere, panels bearing different hues of Pure Structural Colour “shine like jewels,” according to Paul Denton, head of visitor programs and exhibitions at Kew Gardens. Also on display is a painting by artist Coral G. Guest, who used the technology to recreate the metallic sheen of pollia berries. There are examples of possible commercial applications, too, from a pair of Nike sneakers to sunglasses and watches.

Art imitates life

Parker’s fascination with the colors found in nature began while studying marine organisms in Australia in the 1990s. “If we look at the tiniest of coral reef creatures under the microscope, we can see the most incredible colors, much brighter than pigments,” he said in a phone interview. “And when you look at them under electron microscopes you can see the minute structures that interact with light to produce these colors.”

The vivid hues of living creatures are often structural; they are produced by microscopic cell structures that can interact with light to create dazzling optic effects. Typically, artists rely on intricate combinations of pigments to portray the world around them, but using Pure Structural Colour may make it easier to reproducing a variety of color wavelengths, Parker said.

An artwork inspired by the patterns and colors of nature.

“Color is entirely formed in the mind. There are only waves of electromagnetic radiation passing all around us, and we convert that to color,” Parker said. “Art and science are really brought together by color. Here we’re using physics in order to manipulate and refine the nuances of color we can produce.”

One of the ways that Lifescaped has developed Pure Structural Colour is in the form of tiny transparent flakes. These can be mixed with a biodegradable polymer and paint formulations to produce various visual effects, such as intensely bright colors, iridescent colors that seem to change when viewed at different angles, and colors that seamlessly blends into one another.